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Thermal noise in heavy-ion collisions

Kapusta, Müller, Stephanov: Thermal noise exists in viscous relativistic
fluids, represented by Sµνheat and Sµνvisc. (in the Eckart frame) and Sµν and
Iµ in the (Landau-Lifshitz frame).

K (∆η) ∝
〈
dN
dη (η + ∆η)dNdη (η)

〉
−
〈
dN
dη

〉2
, the two-particle correlation as a

function of rapidity gap, has a contribution from thermal noise.

Analytical calculations possible for the Bjorken expansion of an
ultrarelativistic gas.
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Thermal noise in ultrarelativistic gases
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The relations between Green functions

The effect of perturbations on every physical quantity is determined by a
specific Green function:

I Given δĤ(t) =
∫

d3xj(x, t)φ̂(x, t),
〈
δφ̂
〉

=
∫

d4x ′GR(x − x ′)j(x ′),

where GR(x) ≡ −iθ(t)
〈

[φ̂(x), φ̂(0)]
〉

.

I For the same δĤ(t), transition rates determined with

G>(t) ≡ −i
∫

dt
〈
φ̂(t) ˆφ(0)

〉
≡ G<(−t).

I Variances determined with GS(t) ≡ 1
2

〈
{φ̂(t), φ̂(0)}

〉
.

In x and t, several Green functions exist, each with their own domain of
applicability.
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The relations between Green functions

Relationships become clearer in Fourier space:

ImGR(ω) = − i

2

[
−i

∫
dt θ(t)e iωt

〈
[φ̂(t), φ̂(0)]

〉
−i

∫
dt θ(t)e−iωt

〈
[φ̂(t), φ̂(0)]

〉∗ ]
= −1

2

[ ∫
dt θ(t)e iωt

〈
[φ̂(t), φ̂(0)]

〉
+

∫
dt θ(t)e−iωt

〈
[φ̂(0), φ̂(t)]

〉]
= −1

2

∫
dt e iωt

〈
[φ̂(t), φ̂(0)]

〉
= −1

2
(1− e−ω/T )

∫
dt e iωt

〈
φ̂(t)φ̂(0)

〉
= − i

2
(1− e−ω/T )G>(ω).

Hermiticity and the KMS relation lead to algebraic relations between
Green functions in Fourier space.
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The relations between Green functions

Going between coordinate and momentum space relates physics to facts
from complex analysis:

Coordinate space Momentum space
Causality Analyticity of GR(ω) in the upper-half plane

KMS relation Detailed balance

Fluctuation-dissipation GS(ω) = −(1 + 2nB(ω))ImGR(ω)

In particular the correlation function GS ≡ 1
2

〈
{φ̂(t), φ̂(0)}

〉
(fluctuations)

have an easy relationship to ImGR(ω) (the dissipation) in momentum
space.
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Viscosity and thermal noise

“Why didn’t I notice thermal noise in liquids before?”

1
2

〈
{δui

T (x), δuj
T (0)}

〉
≈ T

e+p

(
π(e+p)
η|t|

)3/2
exp

(
− (e+p)|x|2

4η|t|

)
2
3δ

ij :

For non-relativistic gases, e + p ≈ ρ, making T/ρ tiny.

For ultrarelativistic gases, 4η|t|
e+p often small compared to length scales of

interest.

In heavy-ion collisions, length and time scales ∼ 1 fm ∼ 1
T , e ∼ p ∼ T 4,

s ∼ T 3: no mass scale exists to suppress the importance of fluctuations,
only the smallness of η/s can.
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Noise and observables

Now Tµν = Tµν
av. + δTµν :

Each solution for a given δTµν corresponds to one event at a heavy-ion
collider. The ensemble of δTµν is approximated by a data set. Most
observables are averages of these sets.

〈δTµν〉 = 0 → hydrodynamical noise has no effect on one-particle
observables dN/dpT , dN/dy , averaged over many events.〈
δTµνδTαβ

〉
6= 0 → noise affects two-particle correlations even after

averaging over events.

δTµν 6= 0 → noise drives non-trivial variance of all observables, within a
centrality class.
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The shape of second-order noise

The Israel-Stewart formalism of the hydrodynamical equations

∂µ(Tµν
ideal + ∂µW µν) = 0

∆µ
α∆ν

β(u · ∂)W αβ = − 1

τπ
(W µν − Πµν),

where Πµν = η∆µuν + ∆νuµ − 2
3 (∂ · u)∆µν is the first-order viscous

energy-momentum and τπ is the relaxation time. What is the correlation
function for thermal noise here?

Noise in energy-momentum: Tµν + Ξµν :
Current conservation (∂µ(Tµν + Ξµν) = 0) and the fluctuation-dissipation
relation give the autocorrelation of thermal noise (for a fluid at rest):〈

((τπ∂tΞ
ij(x) + Ξij(x))(τπ∂tΞ

kl(x ′) + Ξkl(x ′))
〉

=
[
2ηT (δikδjl + δilδjk) + 2(ζ − 2η/3)T δijδkl

]
δ4(x − x ′).
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Colored noise in numerical simulations

This makes the noise autocorrelation colored:〈
Ξij(x)Ξkl(x ′)

〉
=

[
2ηT (δikδjl + δilδjk) + 2(ζ − 2η/3)T δijδkl

]
× δ3(x − x ′)

exp(−|t − t ′|/τπ)

2τπ
;

the noise decorrelates slowly in time. Numerically, it is easier to use the
first equation to define a differential equation for Ξµν :

τπΞ̇µν = −(Ξµν − ξµν),

where ξµν is now white noise.
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music for 3+1-dimensional viscous hydrodynamics

Noise breaks boost invariance
→ (3+1)-dimensional simulation
necessary for K (∆η,∆φ).

Fluctuations related to dissipation
→ viscous hydrodynamics necessary.

music (Schenke, Jeon, and Gale)
solves the Israel-Stewart model of
viscous hydrodynamics in (τ, x , y , η),
uses lattice EOS, determines
3-dimensional freeze-out surface for
hadron production.
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Calculating linearized fluctuations numerically

The equations for δTµν
id. and δW ′µν = W µν + Ξµν can be linearized:

∂tδT tν
id. = −∂iδT iν

id. − ∂µδW ′µν ,

(u ·∂)δW ′µν = − 1

τπ
(δW ′µν−δSµν−Ξµν)− 4

3
(∂ ·δu)W µν− 4

3
(∂ ·u)δW ′µν−(δu ·∂)W µν

−δuµ((u · ∂)uα)W αν − uµ((δu · ∂)uα)W αν + (u · ∂)δuα)W αν + (u · ∂)uα)δW ′αν)

−δuν((u · ∂)uα)W αµ − uν((δu · ∂)uα)W αµ + (u · ∂)δuα)W αµ + (u · ∂)uα)δW ′αµ).

The equations are discretized: ξ(x)→ ξi = 1
∆V∆t

∫
d4xξ(x).

〈ξ(x)ξ(x ′)〉 ∝ δ4(x − x ′) →
〈
ξiξj

〉
∝ 1

∆V∆t :

hyperbolic equations with large gradients and sources.
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music with noise

δe(x , y , τ), in a
√

sNN = 19.6 GeV Au+Au collision, b = 0.
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The variance of εp in very central collisions

εp = 〈T xx−T yy 〉
〈T xx+T yy 〉 and 2〈T xy 〉

〈T xx+T yy 〉 added in quadrature:
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Conclusions

I Hydrodynamical noise in heavy-ion collisions produces a quiet but
important correlation in heavy-ion collisions, capable of providing
independent measurements of viscosity.

I Thermal noise contributes to event-by-event variance of v2.

I Simulations with initial and freeze-out fluctuations necessary to find
signal of hydrodynamical noise in experimental observables.
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